On quasi-catenary modules

author

Abstract:

We call a module M , quasi-catenary if for each pair of quasi-prime submodules K and L of M with K L all saturated chains of quasi-prime submodules of M from K to L have a common finite length. We show that any homomorphic image of a quasi-catenary module is quasi-catenary. We prove that if M   is a module with following properties: (i) Every quasi-prime submodule of M has finite quasi-height; (ii) For every pair of K L of quasi-prime submodules ofM, q−height(L/K ) = q− height(L) − q − height(K); then M is quasi-catenary.      

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On quasi-baer modules

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

full text

Approximately Quasi Inner Generalized Dynamics on Modules

We investigate some properties of approximately quasi inner generalized dynamics and quasi approximately inner generalized derivations on modules. In particular, we prove that if A is a C*-algebra, is the generator of a generalized dynamics on an A-bimodule M satisfying and there exist two sequences of self adjoint elements in A such that for all in a core for , , then is approx...

full text

on quasi-baer modules

let r be a ring,  be an endomorphism of r and mr be a -rigid module. amodule mr is called quasi-baer if the right annihilator of a principal submodule of r isgenerated by an idempotent. it is shown that an r-module mr is a quasi-baer module if andonly if m[[x]] is a quasi-baer module over the skew power series ring r[[x; ]].

full text

On quasi-free Hilbert modules

In this note we settle some technical questions concerning finite rank quasi-free Hilbert modules and develop some useful machinery. In particular, we provide a method for determining when two such modules are unitarily equivalent. Along the way we obtain representations for module maps and study how to determine the underlying holomorphic structure on such modules.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  115- 121

publication date 2014-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023